Are Tensor Decomposition Solutions Unique? On the Global Convergence HOSVD and ParaFac Algorithms
نویسندگان
چکیده
For tensor decompositions such as HOSVD and ParaFac, the objective functions are nonconvex. This implies, theoretically, there exists a large number of local optimas: starting from different starting point, the iteratively improved solution will converge to different local solutions. This non-uniqueness present a stability and reliability problem for image compression and retrieval. In this paper, we present the results of a comprehensive investigation of this problem. We found that although all tensor decomposition algorithms fail to reach a unique global solution on random data and severely scrambled data; surprisingly however, on all real life several data sets (even with substantial scramble and occlusions), HOSVD always produce the unique global solution in the parameter region suitable to practical applications, while ParaFac produce non-unique solutions. We provide an eigenvalue based rule for the assessing the solution uniqueness.
منابع مشابه
Fast algorithms for Higher-order Singular Value Decomposition from incomplete data
Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of them involve incomplete data. To obtain HOSVD of the data with missing values, one can first impute the missing entries through a certain tensor completion method and then perform HOSVD...
متن کاملParameters selection of morphological scale-space decomposition for hyperspectral images using tensor modeling
Dimensionality reduction (DR) using tensor structures in morphological scale-space decomposition (MSSD) for HSI has been investigated in order to incorporate spatial information in DR. We present results of a comprehensive investigation of two issues underlying DR in MSSD. Firstly, information contained in MSSD is reduced using HOSVD but its nonconvex formulation implicates that in some cases a...
متن کاملConsensus-based In-Network Computation of the PARAFAC Decomposition
Higher-order tensor analysis is a multi-disciplinary tool widely used in numerous application areas involving data analysis such as psychometrics, chemometrics, and signal processing, just to mention a few. The parallel factor (PARAFAC) decomposition, also known by the acronym CP (standing for “CANDECOMP/PARAFAC” or yet “canonical polyadic”) is the most popular tensor decomposition. Its widespr...
متن کاملAn Algebraic Solution for the Candecomp/PARAFAC Decomposition with Circulant Factors
The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Oft...
متن کاملDeveloping Tensor Operations with an Underlying Group Structure
Tensor computations frequently involve factoring or decomposing a tensor into a sum of rank-1 tensors (CANDECOMP-PARAFAC, HOSVD, etc.). These decompositions are often considered as different higher-order extensions of the matrix SVD. The HOSVD can be described using the n-mode product, which describes multiplication between a higher-order tensor and a matrix. Generalizing this multiplication le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011